

Bi-Directional Neural Machine Translation with Synthetic Parallel Data

Xing Niu¹, Michael Denkowski², Marine Carpuat¹

¹University of Maryland ²Amazon.com, Inc.

INTRODUCTION

Problem:

- Back-translated monolingual data improves NMT performance [1].
- But it requires building a reverse NMT system which is expensive.

\succ Our solution:

Combine back-translation with bi-directional NMT.

(1) Select the monolingual data using cross-entropy difference [3].

- (2) Back-translate both source and target monolingual data by a single initial bi-directional NMT model (Model-1).
- (3) Always place the real (monolingual) data on the target side.

APPROACH

Inspired by multilingual NMT which reduces deployment complexity by packing multiple language pairs into a single model [2].

- (4) Fine-tune Model-1 on the augmented training data to get a stronger NMT model (Model-2).
- (5) Re-decode the monolingual data and fine-tune Model-2 to get an even stronger NMT model (Model-3).

- **Bi-directional parallel training data:**
- 1. Adding a language token (e.g. <2en>) to the source.
- 2. Swapping the source and target sentences and appending the swapped version to the original.

IN-DOMAIN EVALUATION (BLEU)

ID	Training Data	$TL \rightarrow EN$	$EN \rightarrow TL$	SW→EN	$EN \rightarrow SW$	$DE \rightarrow EN$	EN→DE
U-1	L1→L2	31.99	31.28	32.60	39.98	29.51	23.01
U-2	$L1 \rightarrow L2 + L1 + \rightarrow L2$	24.21	29.68	25.84	38.29	33.20	25.41
U-3	$L1 \rightarrow L2$ + $L1 \rightarrow L2 *$	22.13	27.14	24.89	36.53	30.89	23.72
U-4	$L1 \rightarrow L2 + L1 * \rightarrow L2 + L1 \rightarrow L2 *$	23.38	29.31	25.33	37.46	33.01	25.05
	L1=EN	L2=TL		L2=SW		L2=DE	
B-1	$L1 \leftrightarrow L2$	32.72	31.66	33.59	39.12	28.84	22.45
B-2	$L1 \leftrightarrow L2 + L1 \star \leftrightarrow L2$	32.90	32.33	33.70	39.68	29.17	24.45
B-3	$L1 \leftrightarrow L2 + L2 \star \leftrightarrow L1$	32.71	31.10	33.70	39.17	31.71	21.71
B-4	$L1 \leftrightarrow L2 + L1 * \leftrightarrow L2 + L2 * \leftrightarrow L1$	33.25	32.46	34.23	38.97	30.43	22.54
B-5	$L1 \leftrightarrow L2 + L1 \star \rightarrow L2 + L2 \star \rightarrow L1$	33.41	33.21	34.11	40.24	31.83	24.61
B-5*	$L1 \leftrightarrow L2 + L1 \star \rightarrow L2 + L2 \star \rightarrow L1$	33.79	32.97	34.15	40.61	31.94	24.45
B-6*	$L1 \leftrightarrow L2 + L1 * \rightarrow L2 + L2 * \rightarrow L1$	34.50	33.73	34.88	41.53	32.49	25.20

EXPERIMENTAL SETUP

> Training data:

Language Pair		#Sentences	Dataset	
English-Tagalog	EN-TL	50,705	News/Blog	
English-Swahili	EN-SW	23,900	News/Blog	
English-German	EN-DE	4,356,324	WMT News	

In-domain test data:

- News/Blog for EN-TL and EN-SW
- > News for EN-DE
- > Out-of-domain test data:
- Bible for EN-TL and EN-SW
- Synthetic data (i.e. MT output) is annotated by asterisks.
- Largest improvements within each zone are highlighted.

\succ Uni-directional models (U-x).

> Models trained on real target language data outperform using synthetic target language data (**U-2** vs. **U-3,4**).

Bi-directional models (B-x).

- > Combining all synthetic parallel data and always placing the MT output on the source side achieve best overall performance (**B-5**).
- Bi-directional models outperform the best uni-directional models for low-resource (EN-TL/SW) language pairs (**B-5** vs. **U-1**).
- > Bi-directional models struggle to match performance in the high-resource (EN-DE) scenario (**B-5** vs. **U-2**).
- \succ Bi-directional models reduce the training time by 15-30% (B-5 vs. U-2).
- Fine-tuning and re-decoding.
 - > Instead of training from scratch (B-5), we can continue training baseline models (B-1) on augmented data and achieve comparable translation quality (**B-5***).
 - Fine-tuning significantly reduces cost by up to 20-40% computing time.
 - Re-decoding the same monolingual data using improved models (B-5*) leads to even stronger models (**B-6***).

> Using synthetic parallel data is always helpful, but when the size is larger than 5n, adding more contributes less (i.e. reaching the plateau) for our systems.

CONCLUSION

> We introduce a bi-directional NMT protocol to effectively leverage monolingual data.

OUT-OF-DOMAIN EVALUATION (BLEU)

	L2=TL		L2=SW		
ID	Training Data (L1=EN)	$TL \rightarrow EN$	$EN \rightarrow TL$	$SW \rightarrow EN$	$EN \rightarrow SW$
A-1	$L1 \leftrightarrow L2$	11.03	10.17	6.56	3.80
A-2	$L1 \leftrightarrow L2 + L1 \star \rightarrow L2 + L2 \star \rightarrow L1$	16.49	22.33	8.70	7.47
A-3	$L1 \leftrightarrow L2 + \underline{L1*} \rightarrow L2 + \underline{L2*} \rightarrow L1$	18.91	23.41	11.01	8.06

> A long-distance domain adaptation task: News/Blog to Bible.

- > Domain mismatch is demonstrated by the extremely low BLEU scores of baseline News/Blog systems (A-1).
- > Selecting monolingual data which is closer to Biblical language.
- \succ After fine-tuning baseline models on augmented parallel data (A-2) and re-decoding (A-3), we see BLEU scores increase by 70-130%.

- Training and deployment costs are reduced significantly compared to standard uni-directional systems.
- > It improves BLEU for low-resource languages, even over uni-directional systems with back-translation.

 \succ It is effective in domain adaptation.

REFERENCES

[1] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving neural machine translation models with monolingual data. In ACL.

[2] Melvin Johnson et al. 2017. Google's multilingual neural machine translation system: Enabling zero-shot translation. TACL.

[3] Robert C. Moore and William D. Lewis. 2010. Intelligent selection of language model training data. In ACL.