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ABSTRACT
Publishing structured data and linking them to Linking Open
Data (LOD) is an ongoing effort to create a Web of data.
Each newly involved data source may contain duplicated in-
stances (entities) whose descriptions or schemata differ from
those of the existing sources in LOD. To tackle this hetero-
geneity issue, several matching methods have been develope-
d to link equivalent entities together. Many general-purpose
matching methods which focus on similarity metrics suffer
from very diverse matching results for different data source
pairs. On the other hand, the dataset-specific ones leverage
heuristic rules or even manual efforts to ensure the quality,
which makes it impossible to apply them to other sources
or domains. In this paper, we offer a third choice, a general
method of automatically discovering dataset-specific match-
ing rules. In particular, we propose a semi-supervised learn-
ing algorithm to iteratively refine matching rules and find
new matches of high confidence based on these rules. This
dramatically relieves the burden on users of defining rules
but still gives high-quality matching results. We carry out
experiments on real-world large scale data sources in LOD;
the results show the effectiveness of our approach in terms
of the precision of discovered matches and the number of
missing matches found. Furthermore, we discuss several ex-
tensions (like similarity embedded rules, class restriction and
SPARQL rewriting) to fit various applications with different
requirements.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability; H.2.8
[Database Management]: Database Applications; I.2.4
[Artificial Intelligence]: Knowledge Representation For-
malisms and Methods
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1. INTRODUCTION
The Linking Open Data (LOD) project, also known as

Linked Data [4] or the Web of data, is an ongoing effort to
connect structured open data published on the Web. En-
couraged by the Linked Data principle1, these data are rep-
resented in a Resource Description Framework (RDF2) and
interlinked using typed links to constitute a single global
data space. With these links, we can navigate from a data
item in one data source to related items in other sources.

Currently, LOD already contains abundant data sources
of various domains: media, geography, life science, publica-
tions, government, etc. Since these data sources are usu-
ally designed and built independently, they often contain
instances (entities) that refer to the same real-world thing
with descriptions using heterogeneous schemata. According
to the Linked Data principles, instances use URIs as their
identifiers and different data sources contain instances of d-
ifferent URIs even though some instances might represent
the same entity. Due to the decentralized nature of LOD,
while it is difficult or even impossible to assign a unique URI
for equivalent instances from different data sources, we can
still interlink these instances through equivalence relations
(i.e. owl:sameAs, a special link from the OWL standard3)
[8].

The LOD space is continuously evolving; when a data
source is newly added or is updated, we should connect in-
stances to their possible correspondences in other existing
data sources. The procedure for addressing this problem is
often called instance matching, also known as entity match-
ing or link discovery in the field of the Semantic Web.

Most practical instance matching methods for LOD are
either domain-specific [30, 28] or dataset-specific [12, 3], so
they cannot be adapted to other domains or data sources.
In recent years, general-purposed approaches have also been
proposed. On one hand, link discovery frameworks leverage
manually defined dataset-specific matching rules (i.e. link
specifications) to discover matched instances [13, 32]. On
the other hand, other approaches focus on similarity met-
rics on instance descriptions, properties and property values
to find correspondences automatically [16, 6, 2, 18, 19, 25].
Their performance depends heavily on the quality of un-
derlying data and thus suffers from very diverse matching
results for different data source pairs.

In this paper, we offer another choice to tackle the instance
matching problem. We try to relieve the burden on user

1http://www.w3.org/DesignIssues/LinkedData.html
2http://www.w3.org/TR/rdf-concepts/
3http://www.w3.org/TR/owl-ref/

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/owl-ref/


by automatically discovering dataset-specific matching rules
while preserving high accuracy and good coverage. These
derived rules have the capacity to find the most discrimina-
tive data characteristics for a given data source pair; this is
similar to methods considered in [14, 15]. We list the main
differences between our approach and the above two in detail
in the related work section (Section 6).
Specifically, we design a semi-supervised learning algo-

rithm (based on an Expectation-Maximization (EM) frame-
work) to iteratively refine matching rule sets and find new
matches of high confidence using these rules. A small num-
ber of existing matches in the form of owl:sameAs proper-
ties are used as seeds and the matching rules are treated as
parameters (to be estimated) for maximizing the likelihood
function. In addition, we proposed a graph-based metric to
estimate the matching precision. The metric serves as the
likelihood function. We also introduce Dempster’s rule to
combine confidence values of different matching rules. Fur-
thermore, we discuss several extensions to fit various appli-
cation scenarios of different requirements. Our approach is
evaluated with real-world large scale data sources in LOD.
The experimental results demonstrate the effectiveness of
our approach in terms of the high precision of newly discov-
ered matches and the large number of missing matches it
found.
The rest of this paper is organized as follows. In Section

2, we give an overview of the framework of our proposed
approach and describe some relevant concepts. Then, in
Section 3, we introduce the workflow of our semi-supervised
instance matching approach and discuss its convergence and
complexity. Some straightforward extensions are also in-
troduced in Section 4. Section 5 reports the experimental
results. We discuss related work and compare some other
approaches with ours in Section 6, and finally, we give a
conclusion and outline future work in Section 7.

2. OVERVIEW AND RELEVANT
CONCEPTS

The problem we want to solve is discovering instance match-
es, so firstly, we introduce some basic concepts.
An instance that refers to a real-world thing is usually

described by several property-value pairs. A property-value
pair along with an instance constitute a triple 〈s, p, o〉. Gen-
erally, the subject (s) is the instance mentioned above, the
predicate (p) stands for the property and the object (o) s-
tands for the value, which can be a literal or another in-
stance. The set of triples in a given source constitute a
graph G.

Definition 1. Equivalence of Instances, denoted by∼I ,
is an equivalence relation. It indicates that two instances are
actually the same thing in the world. Two instances, e1 and
e2, which are identified by different URIs are equivalent iff.
(e1, e2) ∈∼I .

Definition 2. ACorrespondence found by instance match-
ers can be represented as 〈e1, e2, conf〉 in this paper, where
e1 and e2 are two instances and they satisfy (e1, e2) ∈∼I at
the confidence value of conf (conf ∈ [0, 1]).

Instance matchers usually set a threshold of confidence to
determine what correspondences can be output as the final
matches.

The framework of our proposed approach is outlined in
Figure 1. After preprocessing, a vector of property-value
pairs, similar to document description, is attached to each
instance. Then, initial matches (i.e. seeds, we will discuss
how to get seeds in Section 5.1) are imported into the system
to drive the discovery of new matches. After that, the set
of seeds is expanded with newly found high-quality matches
and the system enters another loop. The same procedure is
repeated until the termination condition is satisfied.

The main method of discovering matches in our approach
is learning rules to deduce instance equivalences. First, rules
are mined in known matches given potential property equiv-
alences (see Section 3.1.1). Then, these rules are applied to
unmatched instances to find new equivalent ones (see Sec-
tion 3.1.2).

Here we give an typical example to illustrate this idea.
Suppose we have mined three property equivalences from
descriptions of known matches as follows,

rdfs:label (p11) ≈ (p21) gs:hasCommonName

foaf:name (p12) ≈ (p22) gs:hasCanonicalName

dbpedia:phylum (p13) ≈ (p23) gs:inPhylum.

In practice, a property may be equal to another one. For
example,

The property dbpedia:phylum defined by dbpedia.org and
the property gs:inPhylum defined by geospecies.org have
the same intensional meaning: their values both refer to
the same taxonomic rank in biology when given a certain
instance (species). We say such properties are connotatively
equivalent.

Based on these property equivalences and known instance
equivalences, we can mine a rule like this: if two instances
e1 and e2 satisfy

3∧
i=1

(
p1i(e1, o1) ∧ p2i(e2, o2) ∧ o1 � o2

)
(1)

(p(e, o) is the function expression of 〈e, p, o〉 and o1 � o2
means both o1 and o2 refer to the same instance or literal),
then we have (e1, e2) ∈∼I .

Meanwhile, our data set contains two instances from DB-
pedia and GeoSpecies respectively,

dbpedia:ep rdfs:label "X"

foaf:name "Y"

dbpedia:phylum 〈Z〉
gs:ep gs:hasCommonName "X"

gs:hasCanonicalName "Y"

gs:inPhylum 〈Z〉.
So the rule above can be applied to them and can deduce
that these two instances are equivalent. If the confidence
of the correspondence representing this equivalence is high
enough, this correspondence will be seen as a known match
in the next iteration.

For convenience, we use 〈Z〉 in our example to denote
a shared instance linking to both dbpedia:ep and gs:ep

(i.e. a known match). But we need a formal expression of
comparing property-value pairs.

Definition 3. Equivalence of Property-Value Pairs,
denoted by ∼P , is an equivalence relation. Given two conno-
tatively equivalent properties (p1 and p2) and two values (o1
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Figure 1: Overview of the framework

and o2), the two property-value pairs (〈p1, o1〉 and 〈p2, o2〉)
are equivalent iff. (o1, o2) ∈∼I (values are both instances)
or o1 = o2 (values are both literals).

Now we extend the equivalence relation to property-value
pair sets. Given an instance e and a set of properties (prop-
erty suite) P , we have a property-value pair set PVe,P =
{〈p, o〉|p ∈ P, 〈e, p, o〉 ∈ G}.

Definition 4. Equivalence of Property-Value Pair Set-
s, denoted by ∼S , is an equivalence relation. Given t-
wo instances (e1 and e2) and a set of equivalent property
pairs (〈P1, P2〉), two property-value pair sets (PVe1,P1 and
PVe2,P2) are equivalent iff. there exists a bijection f from
PVe1,P1 to PVe2,P2 and f ∈∼P .

Some properties have great discriminating power so that
their values can uniquely identify corresponding instances.
They are defined by OWL as inverse functional properties
(IFP). However, using a single property to uniquely identify
instances is quite difficult in most cases. Instead, as the
above example shows, using combinations of properties can
be an alternative choice. We call such combinations inverse
functional property suites (IFPS).

Definition 5. A set of equivalent property pairs eps is an
Inverse Functional Property Suite iff. it satisfies: if
(PVe1,eps1 ,PVe2,eps2) ∈∼S , then (e1, e2) ∈∼I .

Once the IFPS is determined, we can make rules similar
to Rule (1) in the above example. We call such rules IFPS
rules.

Definition 6. An IFPS Rule is based on an Inverse Func-
tional Property Suite eps. For all property pairs 〈pi1, pi2〉 in
eps, an IFPS rule has the form:

∀e1∀e2.
( |eps|∧

i=1

(
∀o1∀o2.

(
pi1(e1, o1) ∧ pi2(e2, o2)

∧ ∼P (〈pi1, o1〉, 〈pi2, o2〉)
))→∼I (e1, e2)

)
. (2)

Note that the universal quantification ∀o1∀o2. in Rule (2)
indicates that if a property has more than one value, all
of its values should have equivalents. Practically, this re-
striction is too strict in most cases, so we change it to the
existential quantification. Therefore, we have the concept of
an Extended IFPS (EIFPS) rule.

Definition 7. For all property pairs 〈pi1, pi2〉 in eps, an
EIFPS Rule has the form:

∀e1∀e2.
( |eps|∧

i=1

(
∃o1∃o2.

(
pi1(e1, o1) ∧ pi2(e2, o2)

∧ ∼P (〈pi1, o1〉, 〈pi2, o2〉)
))→∼I (e1, e2)

)
. (3)

The original universal quantification can be realized by
calculating the proportion of overlapping values of the given
property for two instances and we will discuss this method
in Section 4.

3. THE SEMI-SUPERVISED INSTANCE
MATCHING APPROACH

The procedure of discovering rules as well as matches in
an iterative way follows the Expectation-Maximization al-
gorithm.

3.1 The Expectation-Maximization
Algorithm

The EM algorithm is an iterative procedure to estimate
missing data by estimating the model parameter(s) for which
the observed data are the most likely.

The EM iteration alternates between performing an ex-
pectation step (E-step), and a maximization step (M-step).
The E-step estimates the missing data (i.e. correspondences)
using the observed data and the current estimate for the pa-
rameters. In our scenario, we regard the EIFPS Rules, de-
noted by θ, as the model parameters. The M-step computes
parameters maximizing the likelihood function as the data
estimated in E-step are used in lieu of the actual missing
data.



Algorithm 1: Wrapper algorithm

input : A set of triples, a set of known matches
(seeds), and a threshold for selecting
correspondences with high confidence.

output: A set of newly discovered matches and a set of
Inverse Functional Property Suites (IFPSs).

1 candidates,matches ← ∅;
2 repeat
3 IFPSs ← MineIFPSs(triples,seeds,candidates);
4 candidates ← GetCorrespondences(triples,IFPSs);
5 if candidates is large enough then
6 new ← {c|c ∈ candidates, c.conf > threshold};
7 seeds ← seeds ∪ new;
8 matches ← matches ∪ new;

9 until new = ∅ ( new �= null);

Before giving the definition of our specific likelihood func-
tion, we should introduce the concept of a Correspondence
Graph (CG).

Definition 8. ACorrespondence Graph is an undirect-
ed graph, in which a vertex represents an instance and an
edge links two vertices if their corresponding instances are
supposed to be equivalent. If the confidence values of cor-
respondences are considered as weights of edges, a set of
correspondences can map to a unique weighted CG.

The likelihood function is considered to be a function of
θ given the CG M . So we define it as,

L(θ;M) = Pr(M |θ). (4)

Naturally, the probability ofM is reflected in the proximi-
ty of M and the CG built by real matches. For a set of given
correspondences, the proximity is reflected in two aspects:
correctness and completeness. Precision and recall are two
widely used measures to evaluate these characteristics [10].
However, without complete reference matches, it is difficult
to evaluate either of them. Hence we propose an alternative
measurement, that is optimizing the precision takes priori-
ty (ensuring the precision is higher than a given threshold)
and obtaining all potential matches on the premise of that
precision value. So the Equation (4) can be continued as,

L(θ;M) ≈ Precision(M |θ). (5)

Given an CG, we can estimate an approximate precision
value by evaluating the divergence of this graph:

Precisionapprox(M) =Divergence(M)

=
|ConnectedComponent(M)|

|Edge(M)| . (6)

Considering an CG,M , with which instances (vertices) come
from two data sources and assuming that no equivalent in-
stances exist in a single data source, we can infer that an
instance is equivalent to at most one other from the other
data source and thus Divergence(M) should be 1. Incorrec-
t matches in M may result in a vertex connecting to more
than one other vertices, which is contrary to the assumption,
and decrease the divergence of M . We should pay attention
to the statistical significance of the estimate: the approxi-
mate precision is meaningful only if the size of M is large
enough.

For each parameter θ (i.e. an EIFPS rule), we can con-
struct an M according to Rule (3), and put it into the final
united M . To maximize Precision(M |θ), setting a high
threshold for each Precision(M |θ) is our chosen solution.

Once the precision (threshold) is determined, the number
of Ms, as well as the EIFPS rules are also determined. Note
that this does not mean that the likelihood will not change,
because θ changes in each iteration due to the different in-
puts (line 3 in Algorithm 1).

Algorithm 1 demonstrates the wrapper that implements
the EM approach. The first several iterations when the set
of candidates is not large enough, as well as the following
pass of line 3 can be seen as the startup of the EM algorithm,
where the EIFPS rules are initialized. Then, E-step (line 4)
and M-step (line 3) execute alternately until the termination
condition (new= ∅) is satisfied. Note that the conditional
statement in line 5 implements the control over the size of
M . In practice, this condition is satisfied on every iteration
except the first.

Here we introduce the procedures of the M-step and E-
step in detail.

3.1.1 M-step: Mining IFPSuites
The M-step mines EIFPS rules maximizing the likelihood

function (Equation 5) given the candidates and seeds ob-
tained in the E-step. See Algorithm 2.

Algorithm 2: Mining IFPSuites (MineIFPSs)

input : A set of triples, a set of known matches
(seeds), and candidate matches (candidates).

output: A set of Inverse Functional Property Suites
(IFPSs) and the modified triples

1 foreach c ∈ seeds do
2 Replace every 〈s, p, c.e2〉 with 〈s, p, c.e1〉 in triples;

3 trans ← ∅;
4 foreach c ∈ seeds ∪ candidates do
5 trans← trans ∪ {{〈p, o〉|〈s, p, o〉 ∈ triples, s ∈

{c.e1, c.e2}}
}
;

// trans also takes cs’ information

6 pEquivalents ←MineAssociationRules(trans);
7 suite ← ∅;
8 foreach t ∈ trans do
9 foreach P ⊆ pEquivalents do

10 if (PVt.c.e1,P1 ,PVt.c.e2,P2) ∈∼S then
11 Assign a hash code (hc) computed using

PVt.c.e1,P1 and PVt.c.e2,P2 to t.c;
12 suite← suite ∪ P ;
13 Put t.c into P.M ;
14 if P.M already contains a match with the

same hash code of hc then
15 Merge a vertex of this match with a

vertex of t.c;

16 IFPSs← ∅;
17 foreach P ∈ suite do
18 if Divergence(P.M) > threshold and

Divergence(P.M) > all Divergence(p.M) where
p ⊂ P and p ∈ suite then

19 IFPSs← IFPSs ∪ P ;



The newly discovered equivalences (matches with high
confidence) from the previous step can be exploited to boost
the discovery of potential matches. To make use of them,
we should first give equivalent instances a unified identity.
The operations in line 2 replace e2s with e1s.
For each pair of matched instances, their property-value

pairs are merged to form a transaction. The procedure of
mining association rules in line 6 only uses the properties
in transactions. This method, proposed by Völker et al.
[31], acquires property subsumption axioms by mining bi-
nary association rules. According to Definition 5, prop-
erty pairs found here should be connotatively equivalent
property pairs. The equivalence relation can be denoted
by subsumption relations on both sides. Parundekar et.al
[26] used this idea to mine relations between classes. They
restricted the confidence values (called P and R) of sub-
sumptions to be larger that 0.9. In practice, some weakly
related properties that have overlaps in semantics are also
considered to be involved in building rules. For example,
there is no inclusion relation between dbpedia:synonym and
gs:hasCanonicalName, but there exist certain species in DB-
pedia that have canonical names as their synonyms. Such
information should not be ignored. So we set a relatively low
threshold, 0.1, to output more property pairs with potential
relations (weak equivalences).
CGs are constructed for all EIFPS rules. An ideal CG con-

tains only connected components that have one edge each.
Different instances connected in one component result from
sharing the same property-value set on a given property suit-
e (line 15). In order to save storage space, property-value
sets can be hashed. In our experiments, hash collisions can
be neglected if the hash functions is well designed.
The maximization of Precision(M |θ) is realized in line 18

by setting a threshold (0.95 in our experiments). Note that
the support of an EIFPS rule is also considered although
it is not reflected in the algorithm. Sometimes, additional
restrictions in a rule are not necessary. For example, we
may have S1 → A with confidence c and also have S2 →
A with the same confidence c where S2 ⊃ S1. Naturally,
additional restrictions in S2 are redundant for deducing A,
so we neglect such rules.

3.1.2 E-step: Getting Candidate Correspondences
The E-step estimates the correspondences (i.e. candi-

dates) using the current estimate for the EIFPS Rules. See
Algorithm 3.
In line 3, each EIFPS rule is used to find all correspond-

ing initial correspondences. Every IFPS brings a confidence
value with it. This value is calculated in the M-step (line
18 in Algorithm 2) and it indicates the precision of the CG
obtained using that rule in the previous EM iteration.
A correspondence may be derived from several EIFPS

rules. As mentioned above, different rules have different
confidence values and thus the correspondence will inherit
these confidence values. We have to combine them and as-
sign the combined confidence to that correspondence (line
5).
Choosing the maximum is a conservative method. But in-

tuitively, rules can been regarded as evidence and the more
evidence we have, the more likely true the conclusion is.
Here we consider two ways to combine such evidence. One
is using basic probability theory. That is regarding a con-
fidence value of a correspondence as the probability of this

Algorithm 3: Getting candidate correspondences
(GetCorrespondences)

input : A set of triples and a set of Inverse Functional
Property Suites (IFPSs).

output: Candidate matches (candidates).

1 iniCorrespondences ← ∅;
2 foreach eps ∈ IFPSs do
3 iniCorrespondences← iniCorrespondences ∪

{〈e1, e2, eps.conf〉|{e1, e2} × PV{e1,e2},eps ∈
triples, 〈e1, e2〉 satisfies Rule (3) given eps};

4 foreach unique 〈e1, e2〉 within iniCorrespondences do
5 Calculate final confidence cc by combining

{conf|〈e1, e2, conf〉 ∈ iniCorrespondences} using
Dempster’s rule (7);

6 candidates← candidates ∪ {〈e1, e2, cc〉};

correspondence being true, the probability that it is false is
1-confidence. So we have the combination rule,

conf1 ⊕ conf2 = 1− (1− conf1)(1− conf2).

The other method is to use Dempster-Shafer theory, a
mathematical theory of evidence [29]. Dempster’s rule of
combination is a generalization of a special case of Bayes’
theorem. In the case where only two conditions (true and
false) exist, the rule has the form,

conf1 ⊕ conf2 =
conf1 · conf2

1− conf1 − conf2 + 2 · conf1 · conf2 . (7)

Although different pieces of evidence cannot be guaran-
teed to be independent, which is required by both of the
last two methods, these rules have been proven effective in
our experiments. Here we give an example of matching in-
stances from DBpedia and GeoNames4.

Consider a test case consisting of an IFPS eps and two
subset of eps (namely eps1 and eps2 and eps1 ∪ eps2 = eps).
Confidence values of eps1 and eps2 are combined using the
three combination rules mentioned above. The absolute er-
ror equals the combined value minus the reference value
which is the confidence of eps. In this example, we have
a total of 248 test cases, and the results are shown in Fig-
ure 2. Translucent gray boxes representing certain absolute
errors are plotted in the graph, so the more often an error
value appears, the darker its corresponding position’s col-
or is. We can see that most error values of Probability
and Dempster are near 0.00. In fact, the actual mean er-
ror values also indicate that these two rules are better than
Maximum. Results of using Probability and Dempster
are very close if two confidence values to be combined are
relatively high, above 0.95 (a commonly used threshold in
our experiments) for example. We choose Dempster’s rule
of combination finally empirically.

3.2 Convergence
Since the output set of matches is expanded in each it-

eration, its size monotonically increases. Meanwhile, the
number of instances is finite so the number of equivalen-
t instances (including incorrect ones) is also finite. Thus,
the termination condition can always be satisfied when no
matches are found in a certain iteration.

4Detailed information will be introduced in Section 5.
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We give a practical example5 in Figure 3. With the pro-
cedure going, mined EIFPS rules are reaching a plateau and
the set of fresh matches (newly found matches in each it-
eration) gradually becomes smaller, becoming empty in the
ninth iteration. Note that the curve of fresh matches re-
bounds in the fifth iteration probably because some impor-
tant instance equivalences are found in the fourth iteration
and given unified identities, which makes many instances
share these values from then on.

3.3 Complexity and Parallel Implementation
Within each iteration, the phases can be classified into

four categories:
Data pre-processing. The first seven lines of Algorith-
m 2 fall into this category. The complexity is linear and
implementing them in parallel is quite straightforward.
Data post-processing. Getting final output from initial
candidates/rules in both the E-step and M-step fall into this
category. Sorting the initial data is a rational choice. The
Map/Reduce framework [7] is suitable for solving such prob-
lems.
Association rule mining. Mining property relations in
Algorithm 2 can directly use mature techniques, such as FP-
Growth [11] and its parallel implementation [27]. We just
implement the simple Apriori algorithm [1] using Map/Re-
duce and this method is efficient enough.
Join of data and rules. The other phases in both the
M-step and the E-step fall into this category. In the M-
step, we enumerate all possible rules (K) for each known
match (N) to select suitable rules, while in the E-step we
enumerate all determined rules (K) for each instance (N)
to find matched instances. So we have the time complexity:
O(K×N). Note that if a property has more than one value,

5This example comes from a task of matching DBpedia to
GeoNames.

the corresponding rule should be joined repeatedly according
to the existential quantification in Rule 3, which will expand
K dramatically in certain cases. Fortunately, such iterations
can be processed in parallel because the joined results are
independent.

The outermost loop in Algorithm 1 should be centrally
controlled. The Map/Reduce framework as well as exter-
nal memory algorithms are adequate for this task because
the number of iterations is relatively small in practice (see
Section 5.4).

4. EXTENSIONS
What we discussed in the last section is a general core

algorithm. In order to improve its performance in certain
scenarios, we propose several (potential) ways to extend our
approach.

4.1 Similarity Embedded EIFPS Rules
The property-value pair equivalence measurement current-

ly used is based on Definition 3. Literals are matched only
when their characters are exactly the same. This method is
strict, especially for numeric values. For example, the lat-
itude and longitude of a location are usually decimal num-
bers, and they cannot be sensibly compared without taking
account of allowable errors.

If an IFPS contains properties whose values are numeric,
the instances can be indexed by other non-numeric values.
Instances with the same index are further compared by their
numeric values. Under such circumstances, confidence val-
ues of candidate correspondence should be multiplied by the
similarities of numeric values. The idea of indexing instances
before further comparison is used by several instance match-
ing systems such as SILK [32] and Zhishi.links [23]. Note
that we do not consider the case that an IFPS contains only
properties with numeric values. Some methods have been
proposed to solve this problem [17].

Besides numeric values, many other data types (e.g. Date)
can also be compared. Even the similarity of two lists of val-
ues can be calculated in this way. As we mentioned in Sec-
tion 2, universal quantification can be realized by calculating
the similarity of lists of values for two instances. Here the
similarity is defined as the proportion of overlapping values
in two lists.

In fact, we have implemented the similarity embedded
EIFPS rules in discovering matches between DBpedia and
GeoNames. We will discuss it in detail in Section 5.

4.2 Considering Class Restrictions
One difficult issue of instance matching is disambiguation.

For example, we can hardly classify “Harry Potter” to a se-
ries of novels, a film series or a character. But if the type
(class restriction) of “Harry Potter” is provided, everything
becomes easier.

So we can regard the class restriction as one kind of special
property and add it to the EIFPS rules. To this end, we
should modify the procedure of data pre-processing slightly.

In practice, we find that adding class restrictions has little
effect on the final results because several properties have
connotative relations with class restrictions. For example,
an instance having the property“release date” indicates that
it is a work that has a release date like “Film”. However,
this information may be of great importance for some data
sources.



4.3 Online Algorithm
The approach we implemented is an offline one. However,

since the EIFPS rules are very intuitive, they can be rewrit-
ten as SPARQL queries6. Reusing the example in Section 2,
if we have instance dbpedia:ep and want to find an equiv-
alent instance in GeoSpecies, we can construct a SPARQL
query based on Rule 1,

SELECT ?species

WHERE

{ ?species gs:hasCommonName "X" ;

gs:hasCanonicalName "Y" ;

gs:inPhylum <Z> . }

The execution time of a completely online algorithm may
be unacceptable, but it is meaningful to apply it to con-
tinually growing data sources when relatively high-quality
EIFPS rules have been obtained offline.

5. EXPERIMENTS AND DISCUSSIONS
Our approach is implemented in Java. All procedures are

performed with the Hadoop Map/Reduce framework. All
the tests were carried out on a Hadoop cluster which con-
tains 40 nodes. Each node is a PC (Intel Core 2 Quad
2.66GHz CPU, 2GB RAM) can run 3 Maps + 3 Reduces
simultaneously. This is a shared cluster and we occupy 50
slots in most cases.

5.1 Data Sets and Evaluation Methodology
In our experiments, we considered a general data source

DBpedia7, and three domain-specific data sources: GeoN-
ames8, LinkedMDB9 and GeoSpecies10. They are typical
representative data sources in Linked Open Data. The tasks
in our experiments is to discover matches between DBpedia
and the other three data sources.
DBpedia is a hub data source in LOD. It structuresWikipedi-
a knowledge and make this structured information available
on the Web [5]. The DBpedia community occasionally re-
lease data dumps and the latest version (3.7) is used in
our experiments. From numerous datasets, we chose labels,
external links, geo-coordinates and refined ontology infor-
mation including instance types and mapping-based proper-
ties. Note that we removed instances appeared as objects in
“Redirect” and “Disambiguation Links” datasets, but used
their labels as aliases.
GeoNames is a geographical database that integrates tens
of data sources and allows users to improve and correct da-
ta. The dump version we used was 2012-03-03. GeoNames
contains links to Wikipedia pages (gn:wikipediaArticle).
These links were established manually or by heuristic rules.
We converted such links to reference matches.
LinkedMDB is an open semantic web database dedicated
to movie-related information [12]. The dump version we
used was 2010-01-29. In our experiments, we only considered
instances whose type was film since they are the core of
this data source and have sufficient descriptive information.
The reference matches are obtained from owl:sameAs links.

6http://www.w3.org/TR/rdf-sparql-query/
7http://dbpedia.org/
8http://www.geonames.org/ontology/
9http://linkedmdb.org/

10http://lod.geospecies.org/

Table 1: Statistics of Data Sets

Data Sets Instances Triples References

DBpedia 4,071,600 36,565,123 -
GeoNames 8,147,136 86,409,073 317,433
LinkedMDB (Film) 97,471 1,269,572 16,447
GeoSpecies 20,939 997,753 11,490

These links were found by ODDLinker, which employs state-
of-the-art similarity join techniques.
GeoSpecies was started to help tie together disparate da-
ta about species. The dump version we used was 2010-04-
11. Note that some properties which can be seen as cheat-
ing information such as skos:closeMatch were removed.
GeoSpecies also contains links to Wikipedia pages (gs:has
WikipediaArticle) and reference matches are converted from
them. The mechanism of finding these links is not described
by the project owner.

Statistics of these datasets are illustrated in Table 1.
We measured the precisions, newly found matches, and

running times (number of iterations) on different tasks. Be-
fore showing the evaluation results in following sections, the
evaluation methodology and some basic settings should be
discussed.
Judgements and repeats. Since in many cases, reference
matches are far from complete, we have to judge whether a
match is correct or not manually. For each matching task, we
randomly selected seeds and ran the program three times to
measure the average performance. After each execution, 100
randomly selected matches (1000 for DBpedia-GeoSpecies
tasks) were judged.
Seeds. Since our approach is based on the idea of semi-
supervised learning, the choice of labeled data (seeds) is an
issue of concern. Here we selected different proportions of
reference matches as seeds to observe the impact of the num-
ber of seeds on algorithm performance. In situations where
no references exist, seeds can be found by using some strict
heuristic rules or inferred based on the OWL semantics [15].
Parameters. Algorithm 1 needs a threshold (line 6) for
selecting outputs. In practice, we set it to 0.98 unless other-
wise specified. Meanwhile, all supports for association rules
and EIFPS rules in our approach were set to a fixed value,
10. Not many parameters are involved in our approach, and
they can be tuned easily using a small amount of training
data. We reused the same settings for all data sources, which
proved the good stability of our approach in a way [24].

5.2 Precision
The precision is the ratio of correct matches to total match-

es found. We estimate this value by sampling a certain num-
ber of output matches as mentioned in the last section. The
experimental results are shown in Figure 4.

The X-axis indicates the number of seeds and the propor-
tions of selected seeds in complete reference matches. We
conceal the absolute seed numbers in the top figure because
two matching task series share the same plot.

When DBpedia was matched to GeoSpecies and Linked-
MDB, the precision values of newly found matches were rel-
atively high at any number of initial seeds (Figure 4a). In
the case of matching DBpedia to GeoNames, the precision
decreased slightly (#0.98 in Figure 4b). The precision varied

http://www.w3.org/TR/rdf-sparql-query/
http://dbpedia.org/
http://www.geonames.org/ontology/
http://linkedmdb.org/
http://lod.geospecies.org/
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Figure 4: Precisions versus the proportions of selected seeds
in complete reference matches

partly because differences existed in quality of data sources.
Recall that we assume no equivalent instances exist in one
single source, however, we have found that several distinct
instances may refer to the same place. This naturally affect-
ed the estimation of precision in the M-step. Predictably,
the precisions were higher when we changed the threshold
of outputting matches to 0.99 (#0.99 in Figure 4b).
We also tested an extended version of our approach using

similarity embedded EIFPS rules (see Section 4.1). This ex-
tended version only applied to matching DBpedia to GeoN-
ames because some important numeric values such as lati-
tudes and longitudes were involved. The results show that
considering similarities had almost no effect on the precision
(#0.99(+Sim) and #0.98(+Sim) in Figure 4b).
Note that more seeds did not necessarily lead to higher

precision. If things of a certain domain need more property-
value information to be uniquely identified, then it is easier
to have trouble with over-fitting. Determining a proper sup-
port for EIFPS rules will be a solution to this problem.

5.3 Newly Found Matches
The newly found matches (new matches for short) are

defined as the correct matches apart from ones contained in
references. So we calculate their number by

|OutputMatches| × Precision− |TruePositive|
where TruePositive means correctly proposed matches with
regard to reference matches. The experimental results are
shown in Figure 5. Note that the secondary vertical axes on
the right side and corresponding curves in first two plots are
prepared for the next section (to save space).
The number of new matches is relatively constant for any
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Figure 5: Newly found matches versus the proportions of
selected seeds in complete reference matches

number of initial seeds in the cases of matching DBpedia
to LinkedMDB, GeoSpecies and GeoNames without using
similarity embedded EIFPS rules.

However, in the case of considering similarity in DBpedia-
GeoNames tasks, fewer initial seeds tend to give fewer newly
found matches (#0.9X(+Sim) in Figure 5c). This is under-
standable because comparing numeric values needs prior in-
dexing by non-numeric values, so an EIFPS rule containing
properties with both numeric and non-numeric values needs
more known matches to support it.

Note that we did not measure recalls and only considered
matches out of the set of references so far, because even
the reference matches were far from complete. We show the
match space constituted by reference matches and newly
found matches in Figure 6 to illustrate how many matches
can be found by our approach.

The whole match space is divided into three parts: New
Matches, Overlaps and Missing Matches. The last two parts
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Figure 7: Number of iterations versus the proportions of
selected seeds in complete reference matches (DBpedia-
GeoNames)

(streaky and white blocks in Figure 6) together constitute
the match space of references. Since we repeated our algo-
rithm with different numbers of seeds, we choose the median
number of recalls to compute the proportions of “Overlap-
s”. Naturally, remaining matches that were not proposed by
our approach fell into “Missing Matches”. The dark blocks
that represent “New Matches” are using the results under
the condition that all references are involved as seeds.
From the results we can see that our approach is qualified

for matching DBpedia to GeoSpecies and it also performs
better than ODDLinker in matching DBpedia to Linked-
MDB. While in the DBpedia-GeoNames matching task, our
automatic method cannot discover as many instance equiva-
lences as manual methods, but it is complementary to them.

5.4 Time
The numbers of iterations we need to accomplish the match-

ing tasks are shown in Figure 5a, 5b and 7. We chose the
mode of three results since each task was repeated three
times. Not too many iterations were needed as the results
tell us.
Generally speaking, the number of iterations did not de-

crease when fewer seeds were provided. Exceptions existed
similar to the situations when we talked about newly found
matches in the case of considering similarity in DBpedia-
GeoNames tasks. Recall that fewer new instance equiva-
lences are found because similarity embedded EIFPS rules
have insufficient known matches to support them. Thus,
insufficient new matches have difficulty driving the next it-
eration.
Besides the number of iterations, we are also interested

in the time cost of each iteration. We sample some typical

0 200 400 600 800 1000 1200

DBpedia-LinkedMDB

DBpedia-GeoSpecies

DBpedia-GeoNames

Time (second) 

Pre-processing Others GetIniCorrespondences

Figure 8: Typical time cost for one iteration in three match-
ing tasks

running times for a single iteration in Figure 8. The most
time-consuming phases are“data pre-processing”and“join of
data and rules” in the E-step (i.e. GetIniCorrespondences)
which have been discussed in Section 3.3.

6. RELATED WORK
A related problem called record linkage or duplicate de-

tection has been investigated for decades in the realm of
databases [9, 20]. It focuses on dealing with the matching
problems w.r.t. entity-relationship model. Another highly
related problem is ontology alignment [10]. Relevant meth-
ods can be used for connecting LOD sources, but they focus
on schema-level matching and rely on richly structured on-
tologies.

Our proposed approach belongs to the category of instance
matching in the context of LOD. It has attracted much at-
tention and extensively studied by the research community.
Some researchers focused on matching instances for specific
domains, such as people (FOAF) [30] and music [28]. Some
dataset creators designed heuristic methods to discover in-
stance equivalents between their data (e.g. LinkedGeoData
[3] and LinkedMDB [12]) and DBpedia. Some reusable link
discovery frameworks are favored due to the fact that they
are domain-independent and customizable (users specify link
specifications). SILK [32], LIMES [21] and the framework
proposed by Hassanzadeh et al. [13] are typical examples.

Since the similarity of property-value pairs of different in-
stances can be used for finding similar instances, various
kinds of similarity metrics are employed by many general-
purpose (semi-)automatic methods. For example, Castano
et al. [6] designed several domain-dependent similarities,
Albertoni et al. [2] combined different kinds of similarities,
Li et al. [19] used multiple strategies, Ngomo et al. [22]
learned weights of pairwise property-values, and there are
many others [16, 18, 25].

Some other researchers address the instance matching prob-
lem with inference based on OWL semantics. A simple sur-
vey can be found in [15]. Specifically, because inverse func-
tional properties along with their values have great discrimi-
nating power to identify an instance, IFPs play an important
role in inferring instance equivalents. Based on this idea,
Hogan et al. [14] measured the static discriminating power
values of property-value pairs globally and then used these
values to compute how likely two instances are matched. In-
spired by this work, Hu et al. [15] proposed a self-training
algorithm to quantify how discriminating the property-value
pairs were dynamically and choose the most discriminating



property-value pairs to output current matchable instances
iteratively. This method further considered the matchabili-
ty between properties and frequent property combinations.
The idea of these two approaches is similar to ours, but we
choose a quite different and more flexible way to implemen-
t it. Unlike [15], we did not pop the most discriminating
property-value pairs but the most matchable instances in
each iteration, and we did not face the problem of determin-
ing the termination condition. At the same time, we used
newly found matches in each iteration as new matchable val-
ues, while [14] and [15] did not since they focused more on
literal values. Furthermore, the cardinality of our EIFPS is
unlimited but [14] and [15] compared at most two properties
on each side.

7. CONCLUSION
In this paper, we proposed a general-purpose approach to

automatically mine dataset-specific matching rules and this
approach is based on the EM algorithm. We introduced a
graph-based metric to estimate likelihood (precision) and
Dempster’s rule to combine confidence values. Our pro-
posed approach discovers new matches by iteratively refining
matching rules and integrating known equivalent instances.
The number of iterations to accomplish the matching task is
relatively small, and the whole process can be implemented
parallelly.
Moreover, we discussed some extensions to our approach

in order to fit the different requirements of various prac-
tical applications. We carried out experiments on several
real-world datasets. The results demonstrated the correct-
ness of matches discovered by our approach, which achieves
the high precision (>0.96 in most cases). We also shown
more matches are found than existing references (established
by dataset-specific methods), which indicates that our ap-
proach is qualified for matching instances in LOD.
Since the proposed approach is language independent, we

plan to handle the cross-lingual matching problem and per-
form more comprehensive experiments on more datasets of
different domains in LOD. In addition, we plan to extend the
expressivity of our EIFPS rules by considering the negation
operator, and also more sophisticated similarity measures
will be taken into account.
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