

Multi-Task Neural Models for Translating Between Styles Within and Across Languages Xing Niu, Sudha Rao, Marine Carpuat

OVERVIEW

> How can we generate text in the right style?

> Our approach:

- A seq2seq model inspired from advances in Neural Machine Translation (NMT)
- that jointly performs monolingual Formality Transfer [1] and cross-lingual Formality-Sensitive MT [2]
- > and leverages two types of supervision:
- (1) sentence pairs with different styles in the same language, and
- (2) translation pairs drawn from corpora of diverse style.

> Findings:

- > Formality Transfer: the joint model significantly improves formality transfer in both directions.
- Formality-Sensitive Machine Translation: the joint model performs well without being trained on style-annotated translation examples.

<u>RESULTS –</u>	(1)	FORMALITY	TRANSFER

	I-	→F	$F \rightarrow I$	
Model	E&M	F&R	E&M	F&R
PBMT [1]	68.22	72.94	33.54	32.64
NMT Baseline [1]	58.80	68.28	30.57	36.71
NMT Combined [1]	68.41	74.22	33.56	35.03
FT	65.34	71.28	32.36	36.23
Bi-FT	66.30	71.97	34.00	36.33
Bi-FT (enhanced)	71.36	74.49	36.18	38.34
+ FSMT	72.13	75.37	38.04	39.09

I: Informal / F: Formal enhanced: training on E&M + F&R and ensemble decoding

> Automatic Evaluation (BLEU):

- Bi-directional models perform better (FT vs. Bi-FT).
- Multi-task learning yields further improvement (+FSMT).

Human Evaluation:

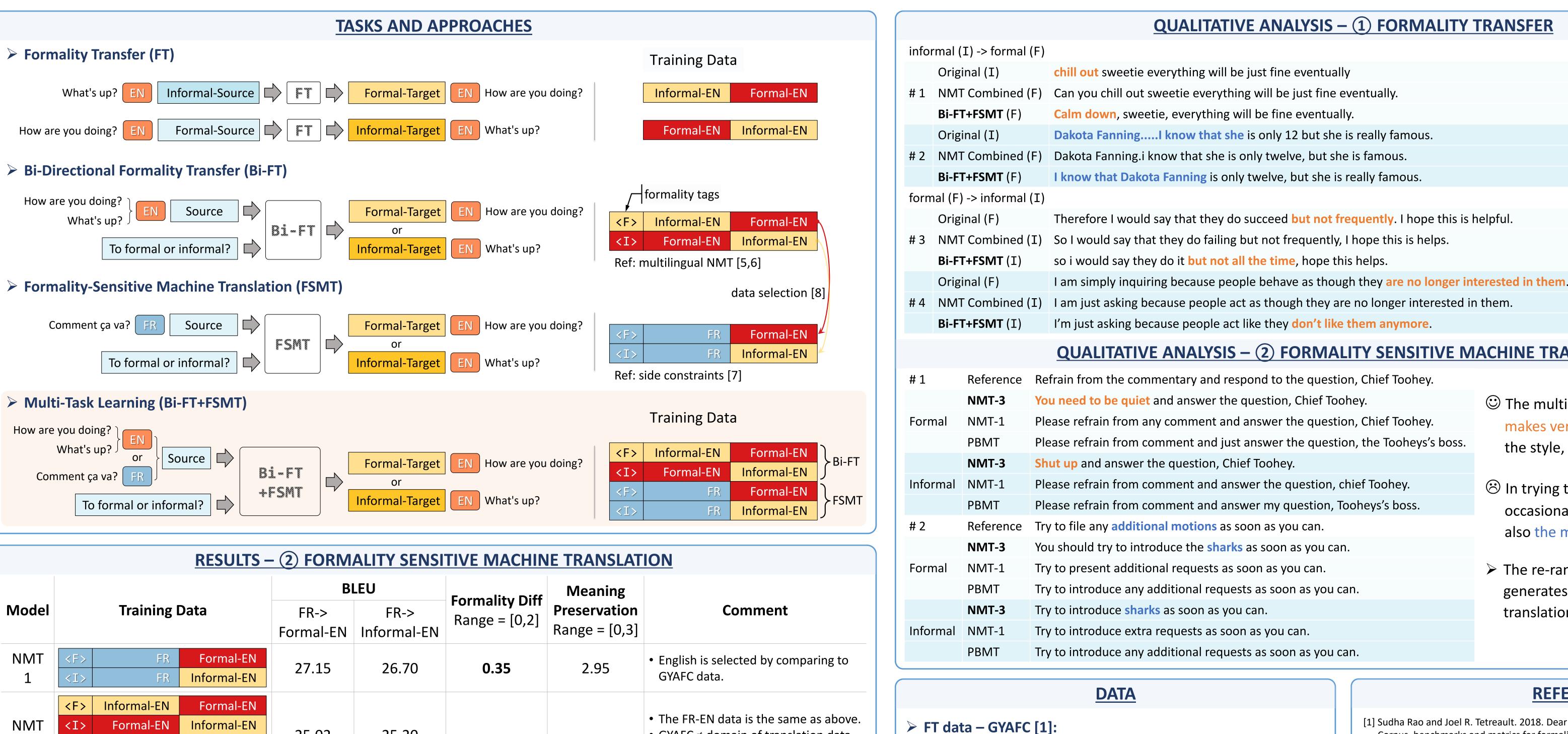
> Our model generates slightly more formal English and significantly more informal English than NMT Combined.

Formality Transfer (FT)

What's up?

How are you doing?

How are you doing? What's up?


Comment ça va?

How are you doing?] 🦲 What's up?

Comment ça va?

RESULTS – 2 FORMALITY SENSITIVE MACHINE TRANSLATION									
			BLEU		Formality Diff	Meaning			
Model	Training Data			FR-> Formal-EN	FR-> Informal-EN	Range = $[0,2]$	Preservation Range = [0,3]	C	
NMT 1	<f></f>	FR FR	Formal-EN Informal-EN	27.15	26.70	0.35	2.95	 English is sele GYAFC data. 	
NMT 2	<f><i><f><i></i></f></i></f>	Informal-EN Formal-EN FR FR	Formal-EN Informal-EN Formal-EN Informal-EN	25.02	25.20			 The FR-EN da GYAFC ≠ dom ☺ for FT, ☺ for 	
NMT 3	<f>< <i></i></f>	Informal-EN Formal-EN FR	Formal-EN Informal-EN EN	25.24	25.14	0.32	2.90	 Tag embeddir are already le informal-form The FR-EN da 	
PBMT		FR	EN	29.12	29.02	0.05	2.97	 The FR-EN da Re-ranking ba	
🕨 Neu	iral mo	dels control f	formality signi	The multi-task model perform well with					

University of Maryland, College Park

- main of translation data ofor FSMT
- dings and the attention learned from the rmal parallel data. data is randomly selected.

data is the same as above. based FSMT [2]

ithout data selection.

20M+ least divergent French-English examples [4]

Grammarly's Yahoo Answers Formality Corpus (2 domains)

Entertainment & Music, Family & Relationships

> 100K+ informal sentences from Yahoo Answers

Rewritten in a formal style via crowd-sourcing

> 20M training pool / 2.5K dev / 2.5K test

> 100K training / 10K dev / 5K test

FSMT data – OpenSubtitles2016 [3]:

QUALITATIVE ANALYSIS – (1) FORMALITY TRANSFER

^(C) Our model produces more formal/informal output by

- > introducing phrasal level changes,
- \succ moving phrases around,
- or making the output more complete (apply to formal).
- ^(C) Our model sometimes fails to preserve the meaning of the source.

QUALITATIVE ANALYSIS – (2) FORMALITY SENSITIVE MACHINE TRANSLATION

- [©] The multi-task model (NMT-3) in general makes very large changes while transferring the style, especially into informal.
- ③ In trying to make changes, NMT-3 occasionally change not only the style but also the meaning of the input.
- The re-ranking model (PBMT) usually generates very similar formal and informal translations.

REFERENCES

- [1] Sudha Rao and Joel R. Tetreault. 2018. Dear sir or madam, may I introduce the GYAFC dataset: Corpus, benchmarks and metrics for formality style transfer. In NAACL-HLT
- [2] Xing Niu, Marianna J. Martindale, and Marine Carpuat. 2017. A study of style in machine translation: Controlling the formality of machine translation output. In EMNLP
- [3] Pierre Lison and Jörg Tiedemann. 2016. Opensubtitles2016: Extracting large parallel corpora from movie and TV subtitles. In LREC.
- [4] Yogarshi Vyas, Xing Niu, and Marine Carpuat. 2018. Identifying semantic divergences in parallel text without annotations. In NAACL-HLT
- [5] Melvin Johnson et al. 2017. Google's multilingual neural machine translation system: Enabling zero-shot translation. TACL.
- [6] Xing Niu, Michael Denkowski, and Marine Carpuat. 2018. Bi-directional neural machine translation with synthetic parallel data. In NMT@ACL.
- [7] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016a. Controlling politeness in neural machine translation via side constraints. In HLT-NAACL
- [8] Robert C. Moore and William D. Lewis. 2010. Intelligent selection of language model training data. In ACL.